• 期刊首页
  • 期刊导读
  • 期刊介绍
  • 投稿指南
  • 邮箱投稿
  • 在线投稿
  • 联系我们

栏目导航

期刊导读
期刊介绍
投稿指南
邮箱投稿
在线投稿
联系我们

综合新闻

  • 弹道中文核心期刊目录(弹道学报期刊)
  • 轰炸机为什么难造
  • 什么意图?美媒又开始热炒“伊朗将向俄提供弹
  • FX168早自习:特拉斯减税“致命性错误” 伊朗向
  • 日韩称朝鲜9日凌晨再发射2枚弹道导弹

通知公告

  • 《弹道学报》投稿方式
  • 弹道学报版面费是多少

您现在所在位置:主页 > 综合新闻 >

轰炸机为什么难造(6)

来源:弹道学报 【在线投稿】 栏目:综合新闻 时间:2022-12-06
【作 者】:网站采编
【关键词】:
【摘 要】:在徐光启看来,翻译只是赶超世界水平的第一步,他说“欲求超胜,必须会通,会通之先,必须翻译。”《几何原本》翻译出版之后,会通工作接踵而来。

在徐光启看来,翻译只是赶超世界水平的第一步,他说“欲求超胜,必须会通,会通之先,必须翻译。”《几何原本》翻译出版之后,会通工作接踵而来。明末有孙元化的《几何用法》(1608)、李笃培的《中西数学图说》(1631)、陈荩谟的《度算解》(1640)、方中通的《数度衍》(1664)等,清初有王锡阐的《圆解》、梅文鼎的《几何摘要》、《勾股举隅》等一系列著作,这些著作都是在这种思想指导下产生的。

梁启超在《近300年学术史))中说:“明末有一次大公案,为学术史上应大笔特写者,日欧洲历算学之输入”。徐光启与利玛窦合译的《几何原本》,“字字精金美玉,为千古不朽之作”。

在徐光启之前,我国古代的数学家对几何方面也作出了卓越的贡献(只是不叫这些知识为“几何”)。比如魏晋时期(曹操及其后代建立的王朝)的山东人刘徽用“割圆术”科学地求出了圆周率π=3.1416。之后,在南北朝时期的南京人祖冲之计算出的圆周率的近似值在3.1415926和3.1415927之间。

几何的起源

几何学是数学中最古老的一门分科。最初的几何知识是从人们对形的直觉中萌发出来的。史前人大概首先是从自然界本身提取几何形式,并且在器皿制作、建筑设计及绘画装饰中加以再现。图1-1所示图片显示了早期人类的几何兴趣,不止是对圆、三角形、正方形等一系列几何形状的认识,而且还有对全等、相似、对称等几何性质的运用。

古代印度几何学的起源则与宗教实践密切相关,公元前8世纪至5世纪形成的所谓“绳法经”,就是关于祭坛与寺庙建造中的几何问题及求解法则的记载。

最早的数学经典《周髀算经》事实上是一部讨论西周初年天文测量中所用数学方法的著作,其中第一章叙述了西周开国时期(约公元前1000年)周公姬旦同商高的问答,讨论用矩测量的方法,得出了著名的勾股定理,并举出了“勾三、股四、弦五”的例子。

几何之父——欧几里得(Euclid,公元前325-公元前265 )是古希腊数学家。欧几里得在公元前300年编写的《几何原本》闻名于世,2000多年来都被看作学习几何的标准课本,共13卷,这本著作是现代数学的基础,在西方是仅次于《圣经》而流传最广的书籍,所以他被人们称为几何之父。没有谁能够像欧几里得那样,声誉经久不衰。现在从小学至高中所学的几何知识都属于欧氏几何(欧几里得几何)范畴。

欧几里得在他留传了几千年的光辉著作《几何原本》中,用公理化方法将古希腊丰富的几何学知识整理在严密的逻辑系统之中,使几何学成为一门独立的、演绎的科学。

欧几里得虽然算不上杰出的数学家,但确实是一位有才华的组织者。他把当时希腊人研究几何的许多证明用更简明、逻辑的语言加以阐述,并把许多有用的知识收集到他的《几何原本》一书,该书把许多世代的几何发明和创造经过加工熔为一炉,是一本具有独特风格的名著。《几何原本》写得生动而又有条理,对前人的许多研究成果作了认真的分析,并给了出色的证明,富于权威性。甚至今天中学里学习的几何课本仍是从《几何原本》改写而成的,它为人类的精神文明起了很好的作用,为数学的发展奠定了基础。

欧几里得是一位很讲究证明方法的学者。有些数学证明题比较复杂,一时难于解决,但如果精心选择证法,往往可以使难化简,作到事半功倍,甚至有些长期解决不了的难题也能一针见血地得到证明。

欧几里得天才的、完美的创造物是《几何原本》。古希腊继承了埃及和巴比伦在实验几何学上的知识,运用逻辑推理的方法把几何学的研究推到高度系统化、理论化的境界,而欧几里得正是这样一位大师。《几何原本》是整个人类文明发展史上的里程碑,是全人类文明遗产中妙用无穷的瑰宝。

《几何原本》从五个公设和五个公理入手,用逻辑推理的方法,演绎出内容极为丰富的几何知识。它叙述并证明了几千年来人类有关点、线、圆和一些简单的立体几何知识,全书共13卷。第1卷,给出了欧几里得几何学的基本概念、定义、公理、公设等;第2卷,面积和变换;第3卷,圆及其有关图形;第4卷,多边形及圆与正多边形的作图;第5、6卷,比例与相似形;第7卷,数论;第8卷,连比例;第9卷,数论;第10卷,不可通约量的理论;第11卷,立体几何;第12卷,利用“穷竭法”证明圆面积的比等于半径平方的比;球体积的比等于半径立方的比,等等;第13卷,正多面体。

《几何原本》一书从很少的几个定义、公设、公理出发,推导出大量结果,最重要的是它给出的公理体系标志着演绎数学的成熟,主导了其后数学发展的主要方向,使公理化成为现代数学的根本特征之一。

文章来源:《弹道学报》 网址: http://www.tdxbzz.cn/zonghexinwen/2022/1206/578.html

  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 下一页
  • 上一篇:什么意图?美媒又开始热炒“伊朗将向俄提供弹
    下一篇:弹道中文核心期刊目录(弹道学报期刊)

    弹道学报投稿 | 弹道学报编辑部| 弹道学报版面费 | 弹道学报论文发表 | 弹道学报最新目录
    Copyright © 2019 《弹道学报》杂志社 版权所有
    投稿电话: 投稿邮箱: